Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(8): 3109-3120, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573104

RESUMO

We test the performance of self-consistent GW and several representative implementations of vertex-corrected G0W0 (G0W0Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the GW scheme either systematically outperforms vertex-corrected G0W0 or gives results of at least comparative quality. Moreover, G0W0Γ results in additional computational cost when compared to G0W0 or self-consistent GW. The dependency of G0W0Γ on the starting mean-field solution is frequently more dominant than the magnitude of the vertex correction itself. Consequently, for molecular systems, self-consistent GW performed on the imaginary axis (and then followed by modern analytical continuation techniques) offers a more reliable approach to make predictions of ionization potentials.

2.
Chem Sci ; 14(40): 11213-11227, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860666

RESUMO

A prominent goal in quantum chemistry is to solve the molecular electronic structure problem for ground state energy with high accuracy. While classical quantum chemistry is a relatively mature field, the accurate and scalable prediction of strongly correlated states found, e.g., in bond breaking and polynuclear transition metal compounds remains an open problem. Within the context of a variational quantum eigensolver, we propose a new family of ansatzes which provides a more physically appropriate description of strongly correlated electrons than a unitary coupled cluster with single and double excitations (qUCCSD), with vastly reduced quantum resource requirements. Specifically, we present a set of local approximations to the unitary cluster Jastrow wavefunction motivated by Hubbard physics. As in the case of qUCCSD, exactly computing the energy scales factorially with system size on classical computers but polynomially on quantum devices. The local unitary cluster Jastrow ansatz removes the need for SWAP gates, can be tailored to arbitrary qubit topologies (e.g., square, hex, and heavy-hex), and is well-suited to take advantage of continuous sets of quantum gates recently realized on superconducting devices with tunable couplers. The proposed family of ansatzes demonstrates that hardware efficiency and physical transparency are not mutually exclusive; indeed, chemical and physical intuition regarding electron correlation can illuminate a useful path towards hardware-friendly quantum circuits.

3.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37795784

RESUMO

We use quantum trajectory theory to study the dynamics of the first step in photosynthesis for a single photon interacting with photosystem II (PSII). By considering individual trajectories we are able to look beyond the ensemble average dynamics to compute the PSII system evolution conditioned upon individual photon counting measurements. Measurements of the transmitted photon beam strongly affects the system state, since detection of an outgoing photon confirms that the PSII must be in the electronic ground state, while a null measurement implies it is in an excited electronic state. We show that under ideal conditions, observing the null result transforms a state with a low excited state population to a state with nearly all population contained in the excited states. We study the PSII dynamics conditioned on such photon counting for both a pure excitonic model of PSII and a more realistic model with exciton-phonon coupling to a dissipative phononic environment. In the absence of such coupling, we show that the measured fluorescence rates show oscillations constituting a photon-counting witness of excitonic coherence. Excitonic coupling to the phonon environment has a strong effect on the observed rates of fluorescence, damping the oscillations. Addition of non-radiative decay and incoherent transitions to radical pair states in the reaction center to the phononic model allows extraction of a quantum efficiency of 92.5% from the long-time evolution, consistent with bulk experimental measurements.

4.
Phys Rev Lett ; 131(10): 100202, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739369

RESUMO

Entanglement is a key resource for quantum information technologies ranging from quantum sensing to quantum computing. Conventionally, the entanglement between two coupled qubits is established at the timescale of the inverse of the coupling strength. In this Letter, we study two weakly coupled non-Hermitian qubits and observe entanglement generation at a significantly shorter timescale by proximity to a higher-order exceptional point. We establish a non-Hermitian perturbation theory based on constructing a biorthogonal complete basis and further identify the optimal condition to obtain the maximally entangled state. Our study of speeding up entanglement generation in non-Hermitian quantum systems opens new avenues for harnessing coherent nonunitary dissipation for quantum technologies.

5.
J Phys Chem Lett ; 14(36): 8050-8059, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37652533

RESUMO

We show that for a class of quantum light spectroscopy (QLS) experiments using n = 0, 1, 2, ··· classical light pulses and an entangled photon pair (a biphoton state) where one photon acts as a reference without interacting with the matter sample, identical signals can be obtained by replacing the biphotons with classical-like coherent states of light, where these are defined explicitly in terms of the parameters of the biphoton states. An input-output formulation of quantum nonlinear spectroscopy is used to prove this equivalence. We demonstrate the equivalence numerically by comparing a classical pump-quantum probe experiment with the corresponding classical pump-classical probe experiment. This analysis shows that understanding the equivalence between entangled biphoton probes and carefully designed classical-like coherent state probes leads to quantum-inspired classical experiments that yield equivalent signals and provides insights for the future design of QLS experiments that could provide a true quantum advantage.

6.
Nature ; 619(7969): 300-304, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316658

RESUMO

Photosynthesis is generally assumed to be initiated by a single photon1-3 from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band1. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses2-15. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively. Excitation of the B800 ring leads to electronic energy transfer to the B850 ring in approximately 0.7 ps, followed by rapid B850-to-B850 energy transfer on an approximately 100-fs timescale and light emission at 850-875 nm (refs. 16-19). Using a heralded single-photon source20,21 along with coincidence counting, we establish time correlation functions for B800 excitation and B850 fluorescence emission and demonstrate that both events involve single photons. We also find that the probability distribution of the number of heralds per detected fluorescence photon supports the view that a single photon can upon absorption drive the subsequent energy transfer and fluorescence emission and hence, by extension, the primary charge separation of photosynthesis. An analytical stochastic model and a Monte Carlo numerical model capture the data, further confirming that absorption of single photons is correlated with emission of single photons in a natural light-harvesting complex.


Assuntos
Complexos de Proteínas Captadores de Luz , Fótons , Fotossíntese , Rhodobacter sphaeroides , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Fluorescência , Processos Estocásticos , Método de Monte Carlo
7.
J Chem Phys ; 156(24): 244108, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778074

RESUMO

We develop a method to simulate the excitonic dynamics of realistic photosynthetic light harvesting systems, including non-Markovian coupling to phonon degrees of freedom, under excitation by N-photon Fock state pulses. This method combines the input-output and the hierarchical equations of motion formalisms into a double hierarchy of density matrix equations. We show analytically that under weak field excitation relevant to natural photosynthesis conditions, an N-photon Fock state input and a corresponding coherent state input give rise to equal density matrices in the excited manifold. However, an N-photon Fock state input induces no off-diagonal coherence between the ground and excited subspaces, in contrast with the coherences created by a coherent state input. We derive expressions for the probability to absorb a single Fock state photon with or without the influence of phonons. For short pulses (or, equivalently, wide bandwidth pulses), we show that the absorption probability has a universal behavior that depends only upon a system-dependent effective energy spread parameter Δ and an exciton-light coupling constant Γ. This holds for a broad range of chromophore systems and for a variety of pulse shapes. We also analyze the absorption probability in the opposite long pulse (narrow bandwidth) regime. We then derive an expression for the long time emission rate in the presence of phonons and use it to study the difference between collective vs independent emission. Finally, we present a numerical simulation for the LHCII monomer (14-mer) system under single photon excitation that illustrates the use of the double hierarchy equations.


Assuntos
Fótons , Fotossíntese
8.
Mach Learn Sci Technol ; 3(1)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35211672

RESUMO

Tensor networks have emerged as promising tools for machine learning, inspired by their widespread use as variational ansatze in quantum many-body physics. It is well known that the success of a given tensor network ansatz depends in part on how well it can reproduce the underlying entanglement structure of the target state, with different network designs favoring different scaling patterns. We demonstrate here how a related correlation analysis can be applied to tensor network machine learning, and explore whether classical data possess correlation scaling patterns similar to those found in quantum states which might indicate the best network to use for a given dataset. We utilize mutual information as measure of correlations in classical data, and show that it can serve as a lower-bound on the entanglement needed for a probabilistic tensor network classifier. We then develop a logistic regression algorithm to estimate the mutual information between bipartitions of data features, and verify its accuracy on a set of Gaussian distributions designed to mimic different correlation patterns. Using this algorithm, we characterize the scaling patterns in the MNIST and Tiny Images datasets, and find clear evidence of boundary-law scaling in the latter. This quantum-inspired classical analysis offers insight into the design of tensor networks which are best suited for specific learning tasks.

9.
J Chem Phys ; 154(12): 121101, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810679

RESUMO

Photo-emission spectroscopy directly probes individual electronic states, ranging from single excitations to high-energy satellites, which simultaneously represent multiple quasiparticles (QPs) and encode information about electronic correlation. The first-principles description of the spectra requires an efficient and accurate treatment of all many-body effects. This is especially challenging for inner valence excitations where the single QP picture breaks down. Here, we provide the full valence spectra of small closed-shell molecules, exploring the independent and interacting quasiparticle regimes, computed with the fully correlated adaptive sampling configuration interaction method. We critically compare these results to calculations with the many-body perturbation theory, based on the GW and vertex corrected GWΓ approaches. The latter explicitly accounts for two-QP quantum interactions, which have often been neglected. We demonstrate that for molecular systems, the vertex correction universally improves the theoretical spectra, and it is crucial for the accurate prediction of QPs as well as capturing the rich satellite structures of high-energy excitations. GWΓ offers a unified description across all relevant energy scales. Our results suggest that the multi-QP regime corresponds to dynamical correlations, which can be described via perturbation theory.

10.
J Phys Chem Lett ; 11(20): 8922-8929, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022176

RESUMO

We report on the findings of a blind challenge devoted to determining the frozen-core, full configuration interaction (FCI) ground-state energy of the benzene molecule in a standard correlation-consistent basis set of double-ζ quality. As a broad international endeavor, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around -863 mEH. However, we find the root-mean-square deviation of the energies from the studied methods to be considerable (1.3 mEH), which in light of the acclaimed performance of each of the methods for smaller molecular systems clearly displays the challenges faced in extending reliable, near-exact correlation methods to larger systems. While the discrepancies exposed by our study thus emphasize the fact that the current state-of-the-art approaches leave room for improvement, we still expect the present assessment to provide a valuable community resource for benchmark and calibration purposes going forward.

11.
J Chem Theory Comput ; 16(4): 2139-2159, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32159951

RESUMO

Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.

12.
J Chem Theory Comput ; 16(4): 2340-2354, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109055

RESUMO

The complete active space self-consistent field (CASSCF) method is the principal approach employed for studying strongly correlated systems. However, exact CASSCF can only be performed on small active spaces of ∼20 electrons in ∼20 orbitals due to exponential growth in the computational cost. We show that employing the Adaptive Sampling Configuration Interaction (ASCI) method as an approximate Full CI solver in the active space allows CASSCF-like calculations within chemical accuracy (<1 kcal/mol for relative energies) in active spaces with more than ∼50 active electrons in ∼50 active orbitals, significantly increasing the sizes of systems amenable to accurate multiconfigurational treatment. The main challenge with using any selected CI-based approximate CASSCF is the orbital optimization problem; they tend to exhibit large numbers of local minima in orbital space due to their lack of invariance to active-active rotations (in addition to the local minima that exist in exact CASSCF). We highlight methods that can avoid spurious local extrema as a practical solution to the orbital optimization problem. We employ ASCI-SCF to demonstrate a lack of polyradical character in moderately sized periacenes with up to 52 correlated electrons and compare against heat-bath CI on an iron porphyrin system with more than 40 correlated electrons.

13.
Nat Rev Chem ; 4(9): 490-504, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127960

RESUMO

The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.

14.
J Chem Theory Comput ; 15(10): 5370-5385, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465217

RESUMO

Transition metal compounds are traditionally considered to be challenging for standard quantum chemistry approximations like coupled cluster (CC) theory, which are usually employed to validate lower level methods like density functional theory (DFT). To explore this issue, we present a database of bond dissociation energies (BDEs) for 74 spin states of 69 diatomic species containing a 3d transition metal atom and a main group element, in the moderately sized def2-SVP basis. The presented BDEs appear to have an (estimated) 3σ error less than 1 kJ/mol relative to the exact solutions to the nonrelativistic Born-Oppenheimer Hamiltonian. These benchmark values were used to assess the performance of a wide range of standard single reference CC models, as the results should be beneficial for understanding the limitations of these models for transition metal systems. We find that interactions between metals and monovalent ligands like hydride and fluoride are well described by CCSDT. Similarly, CCSDTQ appears to be adequate for bonds between metals and nominally divalent ligands like oxide and sulfide. However, interactions with polyvalent ligands like nitride and carbide are more challenging, with even CCSDTQ(P)Λ yielding errors on the scale of a few kJ/mol. We also find that many perturbative and iterative approximations to higher order terms either yield disappointing results or actually worsen the performance relative to the baseline low level CC method, indicating that complexity does not always guarantee accuracy.

15.
J Chem Theory Comput ; 15(1): 311-324, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30485748

RESUMO

We introduce a unitary coupled-cluster (UCC) ansatz termed k-UpCCGSD that is based on a family of sparse generalized doubles operators, which provides an affordable and systematically improvable unitary coupled-cluster wave function suitable for implementation on a near-term quantum computer. k-UpCCGSD employs k products of the exponential of pair coupled-cluster double excitation operators (pCCD), together with generalized single excitation operators. We compare its performance in both efficiency of implementation and accuracy with that of the generalized UCC ansatz employing the full generalized single and double excitation operators (UCCGSD), as well as with the standard ansatz employing only single and double excitations (UCCSD). k-UpCCGSD is found to show the best scaling for quantum computing applications, requiring a circuit depth of [Formula: see text], compared with [Formula: see text] for UCCGSD, and [Formula: see text] for UCCSD, where N is the number of spin orbitals and η is the number of electrons. We analyzed the accuracy of these three ansätze by making classical benchmark calculations on the ground state and the first excited state of H4 (STO-3G, 6-31G), H2O (STO-3G), and N2 (STO-3G), making additional comparisons to conventional coupled cluster methods. The results for ground states show that k-UpCCGSD offers a good trade-off between accuracy and cost, achieving chemical accuracy for lower cost of implementation on quantum computers than both UCCGSD and UCCSD. UCCGSD is also found to be more accurate than UCCSD but at a greater cost for implementation. Excited states are calculated with an orthogonally constrained variational quantum eigensolver approach. This is seen to generally yield less accurate energies than for the corresponding ground states. We demonstrate that using a specialized multideterminantal reference state constructed from classical linear response calculations allows these excited state energetics to be improved.

16.
J Phys Chem B ; 122(51): 12292-12301, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30458617

RESUMO

We present molecular mechanics and spectroscopic calculations on prototype artificial light harvesting systems consisting of chromophores attached to a tobacco mosaic virus (TMV) protein scaffold. These systems have been synthesized and characterized spectroscopically, but information about the microscopic configurations and geometry of these TMV-templated chromophore assemblies is largely unknown. We use a Monte Carlo conformational search algorithm to determine the preferred positions and orientations of two chromophores, Coumarin 343 together with its linker and Oregon Green 488, when these are attached at two different sites (104 and 123) on the TMV protein. The resulting geometric information shows that the extent of disorder and aggregation properties and therefore the optical properties of the TMV-templated chromophore assembly are highly dependent on both the choice of chromophores and the protein site to which they are bound. We use the results of the conformational search as geometric parameters together with an improved tight-binding Hamiltonian to simulate the linear absorption spectra and compare with experimental spectral measurements. The ideal dipole approximation to the Hamiltonian is not valid because the distance between chromophores can be very small. We found that using the geometries from the conformational search is necessary to reproduce the features of the experimental spectral peaks.


Assuntos
Materiais Biomiméticos/química , Ácidos Carboxílicos/química , Cumarínicos/química , Proteínas Virais/química , Algoritmos , Complexos de Proteínas Captadores de Luz/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Método de Monte Carlo , Teoria Quântica , Análise Espectral , Vírus do Mosaico do Tabaco/química
17.
J Chem Phys ; 147(15): 154105, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055342

RESUMO

Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.

18.
Nature ; 543(7647): 647-656, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358065

RESUMO

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.


Assuntos
Biofísica , Modelos Biológicos , Modelos Químicos , Elétrons , Transferência de Energia , Metais/química , Modelos Moleculares , Movimento (Física) , Teoria Quântica , Análise Espectral , Fatores de Tempo , Vibração
19.
Nature ; 538(7626): 491-494, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27706145

RESUMO

In quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg's uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit. We implement multiple readout channels by coupling the qubit to multiple modes of a cavity. To control the measurement observables, we implement a 'single quadrature' measurement by driving the qubit and applying cavity sidebands with a relative phase that sets the observable. Here, we use this approach to show that the uncertainty principle governs the dynamics of the wavefunction by enforcing a lower bound on the measurement-induced disturbance. Consequently, as we transition from measuring identical to measuring non-commuting observables, the dynamics make a smooth transition from standard wavefunction collapse to localized persistent diffusion and then to isotropic persistent diffusion. Although the evolution of the state differs markedly from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates novel capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical systems often interact continuously with their environment via non-commuting degrees of freedom, our work offers a way to study how notions of contemporary quantum foundations arise in such settings.

20.
J Chem Phys ; 145(4): 044112, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27475353

RESUMO

Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...